

IOPoint-USB 16 Isolated High Current Digital Outputs
Manual and Programmer’s guide

2007-06-02A
© 2007 Bibaja, LLC

Bibaja, LLC i 2007-06-02A

GETTING STARTED 1

INSTALLING ON WINDOWS 2K OR XP 1
INSTALLING ON LINUX 3

CONNECTING THE HARDWARE 1

PROGRAMMER’S GUIDE 4

WHAT MAKES IT TICK? 4
CONTROLLING THE OUTPUTS 4
IOPOINT-USB DEVICE IDENTIFICATION 7
PUTTING IT ALL TOGETHER 7

Bibaja, LLC 1 2007-06-02A

GETTING STARTED

Contents of your package:

• IOPoint-USB PCB Assembly
• USB A to B Cable

To get started with your IOPoint-USB, you will need the driver and some example
programs to try on your device.

Installing on Windows 2K or XP
Windows 2K and XP users should download the appropriate driver ZIP package from the
product’s webpage:

 http://www.bibaja.com/products/?page=iopoint_usb

Extract this ZIP file to be used during installation.

Now you are ready to install:

1) Plug USB A to B cable into computer and into IOPoint-USB
2) When prompted, select to install the driver yourself from a known location
3) Browse to the unpacked ZIP archive’s directory and click OK
4) When installation finishes, restart computer

The IOPoint-USB is ready to go. The Visual Basic demo application provides a quick
demonstration of how to access and use your IOPoint-USB programmatically. To use
this application:

1) Download and extract the Visual Basic Demo App Installer ZIP archive from the
web link above

2) Launch Setup.exe
3) The IOPoint-USB Demo will be installed and automatically launched

The IOPoint-USB Demo window should appear that looks like this:

http://www.bibaja.com/products/?page=iopoint_usb

Bibaja, LLC 2 2007-06-02A

The serial number of your IOPoint-USB should appear in the box beneath the “Open”
button. If no device is found, make certain your IOPoint-USB is installed, attached, and
the USB POWER LED is illuminated. Then close and restart the IOPoint-USB Demo.

Click “Open” to open your device. The Output checkboxes should all be enabled now
allowing you to turn outputs on and off. The “All On” and “All Off” buttons at the
bottom provide shortcuts to set all of the outputs to on or off. Here’s how the app looks
after opening and turning on a few outputs:

Bibaja, LLC 3 2007-06-02A

If you have multiple IOPoint-USB devices attached, you can select them from the list and
click the Open button to open them. Changing the list entry will show you the outputs
states for each opened IOPoint-USB. If an IOPoint-USB is closed, the outputs will be
grayed out (disabled) but they will not be turned off.

Installing on Linux
Before installing the IOPoint-USB on a Linux machine, you must first install the
following:

• libusb version 0.1.7 or later
• libftdi version 0.9 or later

Download libusb from:

 http://libusb.sourceforge.net/
Download libftdi from:

 http://www.intra2net.com/de/produkte/opensource/ftdi/

Once you have installed both of these you are ready to download the Linux demo
application from Bibaja:

 http://www.bibaja.com/products?page=iopoint_usb

Unpack the tar.gz archive, then run “make” to build the examples. If you are just
building the command line tools, type “make command”. If you are just interested in the
TCL library, type “make tcllib”. If you want to build both, type “make”.

Now you can launch “./example.sh” to run an example of the command line tools, or you
can launch “./example.tcl” to run an example of the TCL based library. Make sure you
are running as root when you run these examples or you will not have the permissions to
access /proc/bus/usb. You may also discover the device node for the IOPoint-USB under
/proc/bus/usb and change the permissions to world read/write.

There is also a way to configure the scripts under /etc/hotplug to automatically set the
permissions when a new IOPoint-USB is plugged in. To create a script, you will need to
know the IOPoint-USB’s VID/PID are 0x0403/0xE339.

http://libusb.sourceforge.net/
http://www.intra2net.com/de/produkte/opensource/ftdi/
http://www.bibaja.com/products?page=iopoint_usb

Bibaja, LLC 1 2007-06-02A

CONNECTING THE HARDWARE
Now that you’ve installed all the software, you’re ready to connect the hardware. For
this you will need the following:

• A 12V power source with enough current to power your target device
• Quick disconnect female crimp connectors
• The device you wish to turn on

For the automotive environment, you will be using the 12V power of the car. Sum up the
total current requirement for all outputs and install a fuse between the car’s 12V power
and the two 12V inputs of the IOPoint-USB. Be certain to use sufficient gauge wire if
you plan to use the entire 144 amp driving capacity of the IOPoint-USB device. That’s 9
amps per output, 16 outputs, or 16 * 9 = 144 amps.

For other environments, you may be using a 12V power supply. As with automotive
applications, make certain you have sufficient gauge wire going to one or both of the 12V
power supply connections to support your application’s maximum current requirement.

The GND connection on the IOPoint-USB does not carry much current, so a small wire
from this terminal to the car’s chassis ground or ground return of your power supply is
sufficient. This connection is used to bias the gates of the MOSFET switches allowing
them to turn on.

Make certain your 12V and GND connections are solid, and make sure they are not
reversed.

WARNING: Reversing the power supply connections causes the protection diodes in the
IOPoint-USB to conduct. If your power supply does not have a current limit, you must
install a fuse to protect against accidental reverse of the power supply to prevent damage
to the protection diodes. Check your power connections carefully.

To test at this step, plug your IOPoint-USB into your computer, turn on your 12V power
source, and launch the demo application. Using this application, you should be able to
turn on outputs and see the LED illuminate for that output. This indicates you have 12V
connected properly.

Now you are ready to attach your devices. Let’s assume this is an automotive application
and we are controlling two fog lamps mounted towards the front of the car. We will use
outputs 1 and 2 to control the left and right fog lamps independently. Connect a wire
from output 1 and route it through a 10 amp fuse to the left fog lamp. Connect the other
side of the fog lamp to the nearest chassis ground on the car. Repeat this for the right fog
lamp.

Bibaja, LLC 2 2007-06-02A

When you are finished, your connections may look like this:

www.bibaja.com

USB
POWER

16 Isolated High Current
Digital Outputs

1 2 3 4

9

5 6 7 8

10111213141516GND

12V

USB

IOPoint-USB

50A
FU

S
E

50A
FU

S
E

10A
FUSE

10A
FUSE

LEFT FOG LAMP

RIGHT FOG LAMP

CHASSIS
GROUND

CHASSIS
GROUND

12V SWITCHED

Note in this drawing we used two 50 amp fuses instead of one 100 amp fuse. Choose
whatever makes your wiring simple and reliable. If you need 50 amps or less, then
connecting one terminal is sufficient.

Note the IOPoint-USB does have built-in 10 amp PTC fuses for sustained overload
protection. These may not protect from a dead short on an output, such as the fog lamp
yellow wire shorting to the chassis. A short on this wire would allow greater than 55
amps of current to be drawn through the output in 300us time before the PTC reacts and
opens the circuit. If there is any chance such a short could occur, you may wish to use
external fast blow fuses to prevent possible damage to the mosfet switch in the IOPoint-
PL.

Bibaja, LLC 3 2007-06-02A

Now that your connections are made, power up the demo application and turn on outputs
1 and 2:

Now your fog lamps should both be on. If they are not, confirm the LEDs are
illuminated on your IOPoint-USB, check your connections, check your fuses, and check
to make sure the fog lamps are not burned out.

To test using the Linux command line tools with a single device installed:

 iop_set_output 1 1
 iop_set_output 2 1

Or, if you have read ahead and know how to make raw bytes to send to the device:

 iop_write 1 3

Using the TCL examples on either Linux or Windows:

 load libiopusbtcl.so ;# On Linux
 load iopusb_tcl.dll ;# On Windows

 set iop [iop_open] ;# Open the first device found
 iop_write $iop 1 3 ;# Set outputs 1 and 2
 iop_close $iop ;# Close the device

Bibaja, LLC 4 2007-06-02A

PROGRAMMER’S GUIDE
So now you want to write your own program. Whether you program with VB, C, or are a
TCL scripting fanatic, we’ve got you covered. If you are interested in a JNI for Java, we
can make that too.

In this section we’ll go into the low level stuff and explain how the device works and tell
how to talk to the device using the FTD2XX Direct Drivers from FTDI.

What Makes it Tick?
What makes the IOPoint-USB tick is a small chip from FTDI known as the FT245R.
You can read more about that chip on FTDI’s website and download the FTD2XX
Programmer’s Guide while you are there. You will need this guide to understand how to
talk to your IOPoint-USB directly:

 http://www.ftdichip.com/

The FT245R is a USB FIFO chip. What does this mean? Simply put, it means you squirt
bytes in from the USB side and they pop out a parallel FIFO on the other side of the
FT245R. Using a little bit of glue logic, ok, some glue logic and isolation barriers and
mosfet magic, we take those parallel bytes and pop them out of the FIFO and use the
information to set the state of the 16 high current output drivers.

Controlling the Outputs
Now you know we have an FT245R chip in there pushing out 8 bits at a time to our
interface circuitry. The next piece you need to understand is how to format those 8 bits to
control individual outputs.

The 8 bits are divided into two groups: Output Address and Output Value.

Bits are ordered from 7 down to 0, with 7 being the most significant bit and 0 being the
least significant.

Bits 7 to 1 are the Output Address. This means the value encoded in these bits selects the
output to control. For devices like this, we operate using a zero base. This means OUT1
is Output Address 0, and OUT16 is Output Address 15. Put another way, the Output
Address is the OUT number minus 1.

Bit 0, the only bit left, is the Output Value. 0 means off, and 1 means on.

Putting it together:

http://www.ftdichip.com/

Bibaja, LLC 5 2007-06-02A

7 6 5 4 3 2 1 0

Output Address
Output Value

FIFO Byte

Now let’s say you wanted to turn on outputs 1, 8, and 16. How do you convert these into
raw FIFO Byte values to turn on the outputs? Here’s an equation to help:
 FIFO Byte = (Output Address * 2) + Output Value

Remember also:

 Output Address = Output Number – 1

So for outputs 1, 8, and 16:

 FIFO Byte Out 1 = (0 * 2) + 1 = 1
 FIFO Byte Out 8 = (7 * 2) + 1 = 15
 FIFO Byte Out 16= (15 * 2) + 1 = 31

Now if you use the FTD2XX driver API and open the device, then write the values 1, 15,
and 31 to the device, outputs 1, 8, and 16 will be on. To turn them off again, write 0, 14,
and 30 (Subtract the 1 used to turn them on).

Bibaja, LLC 6 2007-06-02A

Here’s a quick reference table for the output values:

Output State Hex Value Decimal Value
1 OFF 0x00 0
2 OFF 0x02 2
3 OFF 0x04 4
4 OFF 0x06 6
5 OFF 0x08 8
6 OFF 0x0A 10
7 OFF 0x0C 12
8 OFF 0x0E 14
9 OFF 0x10 16
10 OFF 0x12 18
11 OFF 0x14 20
12 OFF 0x16 22
13 OFF 0x18 24
14 OFF 0x1A 26
15 OFF 0x1C 28
16 OFF 0x1E 30
1 ON 0x01 1
2 ON 0x03 3
3 ON 0x05 5
4 ON 0x07 7
5 ON 0x09 9
6 ON 0x0B 11
7 ON 0x0D 13
8 ON 0x0F 15
9 ON 0x11 17
10 ON 0x13 19
11 ON 0x15 21
12 ON 0x17 23
13 ON 0x19 25
14 ON 0x1B 27
15 ON 0x1D 29
16 ON 0x1F 31

Bibaja, LLC 7 2007-06-02A

IOPoint-USB Device Identification
Bibaja does not have it’s own USB Vendor ID, so we enrolled in FTDI’s vendor supplied
PID program. FTDI allocated a block of PIDs from their address space to us to use for
our FTDI based devices.

For this product, you will need to know that the VID and PID are:

 VID: 0x0403
 PID: 0xE339

Why is this important? To identify our device on the USB bus. When you use FTDI’s
FTD2XX driver, it will poke around on the USB bus and return a list of all FTDI devices
attached. This means you may find other manufacturer’s products as well.

In our example source, we use FTDI’s FT_GetDeviceInfoList() API call from the
FTD2XX driver to retrieve a list of these devices and compare them to a known ID. In
this case, we use the ID 0x0403E339. In case you cannot possibly imagine where that
number came from, it is the VID/PID smashed together in one 32-bit integer in
hexadecimal representation.

See the TCL example source available from our website for the “iop_list” TCL procedure
source in C. This demonstrates how to use the FTD2XX driver to probe the bus and
locate the attached IOPoint-USB devices.

Putting it All Together
Now you know where to find the programmer’s guide (FTDI’s website). You know to
use the FTD2XX direct driver API. You know the FIFO byte format to turn outputs on
and off. Now what?

Well, the basic flow goes like this:

1) Examine our example source, or use the demo app as is. Or send us suggestions
for better demo apps.

2) Write a program to scan the USB bus using code like our example application to
find the IOPoint-USB

3) Call the FT_OpenEx() routine to open a specific Serial Number. This is printed
on the label on your unit. You can always skip step 2 if you will never have more
than 1 unit, or if you wish to always manually enter the serial numbers.

4) Call the FT_Write() routine to write FIFO bytes to turn outputs on and off
5) Call the FT_Close() routine to close the connection to the IOPoint-USB and exit.

Make sure you leave the outputs in the state you want before closing your
program. A safe thing to do might be to dump a bunch of even numbers using
FT_Write() to turn off all outputs before calling FT_Close()

That’s basically it. Download and use the example source from our website. These
examples will help you use the FTD2XX driver to implement your own application, or

Bibaja, LLC 8 2007-06-02A

you may be able to leverage these examples directly to create your application and save
you some time.

	Getting Started
	Installing on Windows 2K or XP
	Installing on Linux

	C
	Connecting the Hardware
	Programmer’s Guide
	What Makes it Tick?
	Controlling the Outputs
	IOPoint-USB Device Identification
	Putting it All Together

